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ABSTRACT. We consider a new nonlocal and nonlinear one-dimensional evolution model arising in the study
of oceanic flows in equatorial regions, recently derived in [A. Constantin and L. Molinet, Global Existence
and Finite-Time Blow-Up for a Nonlinear Nonlocal Evolution Equation, Commun. Math. Phys. 402 (2023),
3233-3252].

We investigate the spatial asymptotic behavior of its solutions. In particular, we observe the influence
of the Coriolis effect, which, even for rapidly decaying initial data, yields solutions that decay at the rate
1/|z|. Thereafter, we shed light on the optimality of this decay rate.

1. INTRODUCTION

Introduction to the model. Very recently, in [7], P. Constantin and L. Molinet derived a new nonlocal
and nonlinear one-dimensional evolution model arising in the study of oceanic flows in equatorial regions. In
what follows, we provide a brief outline of the derivation of this model. For a more detailed exposition, see
Section 2 of [7].

Within the framework of the physical coordinates - where the x-axis points horizontally due east, the y-axis
points horizontally due north, and the z-axis pointing vertically - the starting point are the Navier—Stokes
system governing equatorial ocean dynamics on the f-plane, i.e., where the Coriolis parameter is approxi-
mated as a constant:

Ou + udyu + v Oyu+ wdu — fw = ,%atp + p1(92u + 8§u) + p20?u,

OV + U 00 + v Oy + w O,v = —%ayP + p1(02u + 8§u) + p20?u,

0w + u Opw + v Oyw + w O,w + fw = f%awp — g+ 1 (0w + agw) + 20w,
Ozu + Oyv + 0, w = 0.

Here, u = u(t, z,y, 2), v = v(t, 2, y, z) and w = w(t, z,y, z) denote the components of the fluid velocity in the
directions of azimuth, latitude, and elevation, respectively, and P = P(t, z,y, z) is the pressure. Additionally,
p > 0 is the constant water density, g > 0 is the Earth’s gravitational acceleration at the surface, py, us >0
are the horizontal and vertical viscosity coefficients, and 8 # 0 is a parameter characterizing the Coriolis
effect. Finally, the equation 0,u + 9yv + 0,w = 0 describes the mass conservation.
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Exploiting the confinement of equatorial flows, the meridional velocity component v, as well as the y-axis
can be neglected, yielding the system for v = u(t, x, z) and w = w(t, z, 2):

Oy + uOpu + wdu — Pw = —%@P + u10%u + p20%u,

Oyw + u 0w + w O, w + Pw = —%(%,P — g+ 102w + p0%w,

Ozu+ 0,w = 0.

Thereafter, by restricting the motion to a fixed depth z = zy and using the incompressibility constraint,
a harmonic stream function is introduced to rigorously deduce that the vertical velocity w is related to the
horizontal velocity u by
w(ta €, ZO) = _Hu(tv T, ZO)»
where H denotes the Hilbert transform (for an explicit definition, see expression (2) below). Additionally, it
is deduced that the horizontal pressure gradient acts as an external forcing term

1
—;axP(t,x,zo) = f(t,z).
Finally, by setting a unified viscosity constant

poi=p — p2 > 0,
the authors of [7] show that the previous system reduces to the following one-dimensional nonlocal nonlinear
model:
Oy + 1w Oy + (Hu) 0y (Hu) + B Hu — pd%u = f, w>0, B#0,
which describes the evolution of the horizontal velocity u(t, x) in the context of equatorial oceanic flows.

Previous theoretical results. The initial value problem associated with this model is also studied in [7]
under the periodic spatial condition x € T := R\ Z. Specifically, for s € R, we denote by H§(T) the closed
subspace of zero-mean functions in the Sobolev space H*(T). It is then shown that the model above is
locally well-posed in the space H§(T) for s > —%, provided that the initial datum and the external source
term satisfy

up € Hy(T),  f e L=([0, +oc[, Hy (T)), s >s.

_1
Moreover, taking f = 0 and using similar arguments as in [1, 11], it follows that H, ?(T) is the critical
Sobolev space for the well-posedness of this model.

As noticed in [7], all suitable assumptions can always be imposed on the external source term f. Conse-
quently, with only a minor loss of generality, one may assume

=0,

in order to carry out a qualitative study of the properties of this model, which are mainly governed by its
linear and nonlinear terms. One such property concerns the global-in-time existence of solutions.

In full generality, smooth solutions formally satisfy the following energy estimate:

d
Gl S = [ (1) 0, ) e = (e, )

where the nonlinear effects of the nonlocal term (Hu) 9, (Hu) ultimately prevent the derivation of suitable
energy estimates that would yield global-in-time existence of solutions through standard Grénwall-type
arguments.

In this context, for s > 0, it is shown in [7] that small initial data ug € Hg(T) satisying |juo||z> < §, yield

global-in-time solutions u € C([0, +-o0[, H§(T)) that satisfy the uniform bound |lu(t,-)|| 2 < 4, for all £ > 0.

The long-time dynamics of solutions arising from large initial data, i.e., when |lug|[> > &, appear to be
considerably more complex. In fact, by exploiting the Fourier mode decomposition, the last sections of [7]
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show, on the one hand, that certain large initial datum supported on a finite number of Fourier modes yield
a global-in-time solution u(¢, ) to the model. On the other hand, this same type of initial data can lead to
blow-up in finite time of the corresponding solution.

New theoretical results. The main objective of this note is to continue the qualitative study of the model
introduced above. Specifically, we investigate the spatial asymptotic behavior of its solutions, assuming from
now on that the spatial variable x belongs to the entire real line R.

The spatial asymptotics of solutions to models in fluid motion are not only of mathematical interest but
also of physical relevance. Intuitively, as mentioned in [4], if at the beginning of the evolution problem the
fluid is at rest outside a bounded region (i.e., the initial data are compactly supported), we would like to
determine the rate at which the fluid particles move away from the initial region once the motion begins.

Mathematically, such questions are addressed by studying the pointwise behavior of solutions to these
models as |x| — +oo. For instance, in the case of the three-dimensional Navier-Stokes equations on the
whole space, it was shown in [12] that well-prepared initial data lead to an instantaneous spreading of the
corresponding solutions, which cannot decay at infinity faster than the rate 1/|z|*. See also [2, 3, 4, 6] for
further references on the spatial pointwise behavior of the Navier—Stokes equations

Concerning some one-dimensional models, this question has been studied in [8, 9] for certain dissipative
modifications of the Korteweg—De Vries and Benjamin—Ono equations, which arise in the study of viscous
stratified fluids. In these cases, it was shown that well-prepared initial data lead to solutions with an
optimal pointwise decay rate of 1/|z|? as |z| — +o0o. Recently, in [10], this study is done for a general-
ized dispersive-dissipative Kuramoto-type equation, leading pointwise decaying rates of solutions which are
essentially governing by the fractional power of the Laplacian operator appearing in this equation.

Motivated by the aforementioned studies, we now turn our attention to the initial value problem associated
with the nonlocal nonlinear model introduced above

W Ou +udpu + (Hu) 0, (Hu) + B Hu — pd2u =0, B#0, pu>0,
1

u(0, +) = uo,

where, for a time 7" > 0, the function w : [0,7] x R — R denotes the solution, and ug : R — R an initial
datum. Additionally, the operator H is the Hilbert’s transform, which can be defined in the Fourier level by
the symbol

- -1, £<0,
(2) Hp(§) = —isign(§)p(§),  sign(§) = {0, £=0, ¢ € S(R).
1, £€>0,

Note that, with a minor loss of generality, the external source term is taken to be zero. Here, we aim to
understand how the linear and nonlinear terms in this equation govern the asymptotic spatial behavior of
the solutions.

We will consider the following hypothesis on the initial data:
3
(3) ug € H*(R), s>§.

This constraint on the regularity parameter s is essentially technical, introduced to handle the nonlinear
terms v 0, u and (Hu) 9, (Hu) in equation (1).

Furthermore, for a constant Cy > 0 and a fixed parameter v > 0, we assume the prescribed pointwise
decaying rate
Co

(4) |uo(x)] < AT )

for any z € R.
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Here, the parameter « essentially measures the decay rate assumed for the initial data. Nevertheless, due to
certain technical constraints, a faster decay rate, given by the exponent 1 + +, is required.

Then, our main result is stated as follows:

Theorem 1.1. Assume (3) and (). There exists a time Ty = To(ug) > 0 and a unique solution u €
C([O,TO],HS(R)) of equation (1). Additionally, for any time 0 < t < Ty and x € R, the arising solution
u(t,x) of equation (1) satisfies the pointwise estimates:

Cq

5 u(t,x)| + |[Hu(t,z)| < = - ,
6 ults )| + [t )| < e

where the constant C; = C1(B,7, 1, To, Co,u) > 0 is independent of the time variable t and the spatial
variable x.

Estimate (5) exhibits a pointwise spatial decay rate for the solution u(¢,x), representing the horizontal
velocity, and for its Hilbert transform Hu(t,z), representing the vertical velocity in the context of the
equatorial oceanic flows introduced above.

When comparing estimates (4) and (5), it is interesting to observe an instantaneous loss of persistence
with respect to the prescribed decay rate assumed for the initial data. Specifically, as |x| — 400 we have
—, 0<y<1,
1 kgl
at t=0, and |u(t,z)| S for 0<t<T.
v>1,

<
w02 £ v 1
x|’
We thus conclude that for small values of 7 (that is, when 0 < v < 1) the decay rate of the initial data still
influences the spatial asymptotics of the solution, whereas for large values of v (when v > 1), the solution
decays at infinity like 1/|x|.

In order to briefly explain this phenomenon, we mention that, roughly speaking, estimate (5) is obtained
from the mild formulation of the solution u(¢, ), which involves a convolution kernel K (¢, 2). This kernel,
explicitly given in expression (11) below, depends strongly on the Coriolis parameter 3. In the physically
relevant case (§ # 0, we show that K (t,x) ~ 1/|z| for any ¢ > 0 and sufficiently large |x|, which leads to the
observed decay rate of the solutions when v > 1.

It is therefore interesting to observe the influence of the Coriolis parameter § on the spatial asymptotics
of solutions to equation (1). In the case 8 = 0, expression (11) shows that K (¢,z) is the well-known heat
kernel, which decays rapidly in the spatial variable. Nevertheless, this case is not physically relevant in the
context of this equation.

Assuming fast-decaying data, which satisfy (4) for v > 1, in our next result we shed some light on the

optimality of the decay rate 1/|z| of solutions.

Proposition 1.1. Under the same hypotheses (3) and (4), assume that v > 1 and that the initial datum
also satisfies

(6) /Ruo(x) dx := M (up) # 0.

Let u(t,x) be the associated solution of equation (1) obtained in Theorem 1.1. Then, one of the following
statements does not hold:
o There exist € > 0 and M, > 0 such that, for any 0 <t < Ty and any |x| > M., the solution satisfies
the pointwise decay estimate:

Cy
7 t,z)| + |[Hu(t, <4,
(7) lu(t, z)| + [Hu(t, z)| PESTR
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for some generic constant Co > 0, independent of t and x, but possibly depending on the parameters
B,7,¢, 1, To, Co, M (up), as well as on certain norms of the solution u.

o The solution satisfies the mean decay property
8) u, Hu € C([O,TO], L2(R, x| dx)).

In order to explain in what sense this result suggests the optimality of the decay 1/|x|, we provide a brief
explanation of the main idea of the proof. First, we discuss the meaning of (7) and (8). Note that estimate (7)
states that the solution u(t, z) of equation (1) decays at infinity faster than 1/|z|, while equation (8) shows
that, for any time 0 < ¢ < Tp, the solution u(t, x) satisfies |z|u(t,-) € L*(R). Such weighted Lebesgue spaces
have been used in previous works concerning spatial decay in one-dimensional dispersive models [13, 14, 15].
Specifically, the fact that |z|u(t,x) is an L2-function implies that, on average, u(t, ) must decay at infinity
faster than 1/|z|.

In this context, assuming that both (7) and (8) hold, a contradiction arises. Indeed, under these assump-
tions, and assuming in addition the technical nonzero-mean condition on the initial data (6), we are able to
show that, for any fixed time 0 < t < Tp, the solution exhibits the following sharp asymptotic behavior:

1 1
u(t,z) = =®(M(ug),t,u) + o(t) (|> , |z] — +oo,
x x
where the function fIJ(M (up), t, u), explicitly defined in equation (54) below, does not depend on the spatial
variable z, and the expression o(t)(1/|x|) satisfies

o(t)(1/lz|)

— = =0.

Ultimately, this asymptotic profile yields a contradiction with assumptions (7) and (8), respectively.

Returning to Theorem 1, note that, as a by-product, we also prove the local well-posedness of equation (1)
in the space H*(R) for s > % In this sense, we partially extend to the whole real line R the result obtained in
[7, Proposition 3.3] for the torus T. Additionally, following similar arguments as in [7, Proposition 3.4], the
local well-posedness in H?®-spaces can be extended to s > —%. Moreover, the question of local well-posedness

in the critical space H _%, in both the periodic and non-periodic cases, appears to be far from obvious.

On the other hand, the global-in-time existence of H*-solutions to equation (1) is an interesting question,
since the arguments used in the periodic setting are no longer valid on the whole real line R. In fact, the
existence of small L2-solutions belonging to the space C([0, +o0), H3(T)) for s > 0, proved in [7, Proposition
4.1], relies crucially on Poincaré’s inequality for zero-mean functions. Moreover, the finite-time blow-up
of solutions for certain well-prepared large initial data, established in [7, Proposition 6.1], also exploits
tools specific to the periodic setting, in particular, the Fourier-mode decomposition of periodic, zero-mean,
square-integrable functions

Consequently, on the whole real line R, the long-time dynamics of H*-solutions to equation (1) remains, to
the best of our knowledge, a challenging open problem. In future work, we aim to gain a deeper understanding
of this issue. Nevertheless, by performing suitable energy estimates, we are able to establish the following
blow-up criterion.

Proposition 1.2. Under the same hypothesis as in (3), let u € C([O, To], H® (R)) be the solution to equation
(1) obtained in Theorem 1.1. Then the following statement holds: for some time Ty < Ty < 400, we have

T,
) Jim [u(t, Y- = +oo if and only if / 9wt(t, )| o dt = +oo.
L 0
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From this blow-up criterion and well-known properties of the Hilbert transform, for a given time Ty < Tk,
assuming that

T.
| ocut e dt <+
0
it follows that the solution w(¢,z) of equation (1) satisfies
u, Hu € C([0, T.], H*(R)).

It is then natural to ask whether this information on u allows the pointwise spatial decay estimate (5) to
be extended to all times 0 < t < T,. Nevertheless, to the best of our knowledge, this does not seem to be
possible in full generality. In this setting, in order to extend the pointwise estimate (5) to further times, we
require an additional technical assumption on the solution u(t, x).

Proposition 1.3. The pointwise estimates (5) for the solution u(t,x) remain valid for all times 0 < t < Ty,
with Ty < T, < 400, provided that

(10) u, Hu € C ([0,7.], H* N L'(R)) .

Even when the initial data belong to L!(R), it is not well understood whether this property is preserved
by the associated solution of equation (1); see Remark 2 for more details on this point. Consequently, in
this result we provide a partial answer to the question raised above.

Organization of the article. The rest of the paper is organized as follows. Our proof relies strongly on
the mild formulation of equation (36), specifically on the convolution kernel arising from the linear terms.
In Section 2, we introduce this kernel and derive several useful estimates. Section 3 is devoted to the proof
of Theorem 1.1 and Proposition 1.1. Finally, in Section 4, we provide the proof of Propositions 1.2 and 1.3.

Notation. Throughout this note, p(£) denotes the Fourier transform of ¢. Additionally, C' > 0 denotes
a generic constant, depending on the parameters of the model, which may change from one line to the next.

2. KERNEL ESTIMATES

We introduce the kernel K (¢, ) as the solution of the linear problem associated to equation (1):

K+ HK — ud?K =0, B8#0, pu>0,
K(t,0) = dy,

where §p denotes the Dirac mass at the origin. A direct computation yields the explicit expression for K (¢, x):
o0 ) .
(11) K(t71‘) — / eszxﬁe—uf t+'t,351gn(§)td£.
— 00

Using this representation, and following some ideas in [8, 9, 10], we derive some useful pointwise estimates
for K(t,z) and HK(t,x).

Proposition 2.1. There exists a constant C = C(B, 1) > 0, which depends on the parameters 8 # 0 and
w >0, such that for anyt > 0 and © € R it holds:

~

(12) K (t2)| + MK (1) < 0 101

1
, t): =141tz +1t,
T ¢z 1+ |7 n(t) T

where H is the Hilbert’s transform defined in expression (2).
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Proof. We begin by considering the function K (t,z). Using expression (11), the identity 0 e2miTE = Qg e2TITE
and integrating by parts, we obtain

0 +o0
K(t,x) — / eQWiaffe_ltfzt—iﬂtdé- +/ eQTrixge_ngtJriﬂtdf
0

— 00
1
2mix

1

2mix

0 “+o00
/ ag(eQTrimg)e—ufzt—iBtdg + / 8£(e2wim§)e—p52t+iﬁtd€
—oo 0

)

“+o0 400
2771'158 —u§2t+iﬁt d

/0 e 0 e 0 )

—ift _ it 0 +oo
_ € € b 1 (/ €2ﬂix£85(6_#§2t_iﬁt)d§ +/ eQwixfaﬁ(e—MEQt—o—iBt)df) .

0
_ _ 1 / 62““58&(67“52“"&)%4— 1 <e2wim§€u£2ti6t

(13) 2mixr J_ o 2mix
1
2mix

1

. 2, .
(62771156—#5 t+ipt

2mix 2mix \ J_o 0

I(t,x)
Here, for any x # 0, by direct calculation we obtain

e Pt — et sin(Bt)
2mix N ™

Additionally, for any = # 0, the second term is estimated as follows:

3
(14) Itw) < C .

In fact, following similar computations as above and using the rapid decay properties of the heat kernel
e HEt e write
0
I(t .’L‘) — # _/ 627‘—ix562(6_“§2t_iﬁt)d£+ eZTri;cfe_Hg%—iBt(_Qué_t)‘O
’ (2miz)? e ¢ -0

HO0 izt o2 211 iBt i 21 iBt oo
_/ e mfaE (e HETHIBY) g 4 2mivE (=€ tip (—2u€t)}
0 0

= 4471.21‘2 (/ eQTrzwﬁe—M52t—z,3t(4u2§2t2 _ 2Mt)d§ + / eQTrzwfe—u52t+lﬂt(4M2§2t2 _ 2,Ui)d§>
—o0 0

1

< — ¢ :
~ 4n2x2

+oo +oo 1 =

—p€2t 26242 _ —u(t28)%(4,,2(+% V2 tz

[m e HE (4ptettt 4+ 2ut)dE = Py /700 e (4p2(t2€)° + 2u)d¢ < Cx2.
Once we have established these identities and estimates, returning to (13), we obtain for |z| > 1

1
x|

Moreover, we deduce the following asymptotic profile, which will be used later:

(15) (o) <o BN o B oot

] >~

< t
(16) K(t,x):—%+l(t,x),t>0, 2| > 1.
On the other hand, for any € R we can write
7> e —pe’t c
(17) [K(tz)| < [[K@ )~ < 1K@ )] < el <

Therefore, by combining estimates (15) and (17), we arrive at the first desired estimate (12).
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The estimate concerning HK (¢, z) follows from similar computations. For the reader’s convenience, we
present below the key calculation.
+0o0 R
HK(t,z) = — z/ g2zt sign(€) e ™M HiSign(g)Btd{

—0o0

i /0 Be ( 27ri:v£) 7u€2t7iﬁtd€ i /+Ooa ( 27riz£) 7u52t+i,8td£
= & e —_ e &
2mix J_ o ¢ 2mix Jo ¢

—iBt iBt 1 0 ) ; oo i i
_ e +e </ 62719358& (e_ug%_lﬁt)dg _ A 62ﬂzx£a§(e—M€2t+zﬂt)d£>7

2mix 2miz \J_o

J(t,x)

As above, for x # 0 we have

—ift | Bt + t3
e +e'r coS(p ), and J(t,z) < c—
x

2mix TIX

which yields the asymptotic profile

t
(18) wictz) = 2P g, >0, jul > 1
X
This completes the proof of Proposition 2.1. ([l

Remark 1. Note that the asymptotic profile (16) shows that, for § # 0 and any time t # %r with k € Z, the
kernel K(t,z) has the optimal decay rate 1/|x|. Therefore, K(t,-) ¢ L*(R). Similarly, from the asymptotic
profile (18), the same conclusion holds for HK (t,x) for any time t # %

Consequently, when 8 # 0, there is no positive time t for which both K (t,z) and HK (¢, ) decay at infinity
faster than 1/|x|, and for which K(t,-) and HK(t,-) belong to L'(R).

3. ASYMPTOTIC BEHAVIOR IN THE SPATIAL VARIABLE

3.1. Proof of Theorem 1.1. We begin by outlining the general idea of the proof. To our knowledge, the
Hilbert transform # is not bounded on the weighted space L>((1+ |- [)™(1:?)dz), which makes it difficult
to control the nonlinear term (Hu) 0, (Hu).

To overcome this issue, in the first step of the proof we introduce an auxiliary coupled system in the
variables 4 and 0, which will allow to control both v and Hu later. We then prove the existence of local-in-
time C;H-solutions, which also satisfy

|+ tahmman@a) e, | < +oo.

In the second step, we prove the uniqueness of solutions (%, ) to this auxiliary system in the larger space
C:H?.

Finally, in the third step, returning to the original equation (1) we obtain a solution u € C;H2, where the
pair (u,Hu) also satisfies the auxiliary system introduced above. By uniqueness, it follows that (u, Hu) =
(, ), which leads to the pointwise estimate (5).

First step: the auxiliary system. In equation (1), observe that if @(¢,z) is a solution with initial
datum g, then 0(t, z) := Hu(t,z) formally satisfies:

00 + H(10,1) + H(00,8) + BHO — pd20 =0,  9(0,-) = Hiip.
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Therefore, we will study both @(t, ) and ©(t, ) as solutions of the following coupled system:
¢l + U Ot + D 0p® + BHU — 021 = 0,
(19) 0 + H (1 0y) + H(D0,0) + BHT — pd2o =0,
@(0,-) = g, 9(0,-) = Hio.
Let T > 0 a time to be fixed later. For s > %, consider the Banach space
Er={weC([0,T],H*(R)) : ||lw|g, < -+oo},

endowed with the norm

(1 fa™ = (e,

1
|wl|pr = sup |lw(t,-)||m: + sup t2 .
0<t<T 0<t<T Lo

Here, the second term characterizes the pointwise decay in the spatial variable of the function w(t, z). The
time weight t2 is included for technical reasons to ensure the validity of our subsequent estimates.

Proposition 3.1. Assume that tg satisfies (5) and (4). There exists a time Ty = To(@io) > 0 and a solution
(a,0) € Eg, to the coupled system (19). In particular, for any 0 <t < Ty and x € R, this solution verifies
the pointwise estimate:

Il s + 0] e,
(20) ja(t, )| + [0(t, )| < F——0——— 0
t3 (1 + |z|)min(7)

Proof. We observe that system (19) can be equivalently reformulated as the following fixed-point problem:

t
a(t, ) = K(t, ) x g — / K(t—r71,)% (ﬁ O, + ﬁ@mﬁ) (7, )dr,

0
(21) .
O(t,) = HK(t,-) * tg — / HEK(t —7,) % (40,0 + 00, 0) (7, -)dT.
0

In the second equation, the Hilbert transform is applied to the kernel K (¢, ), defined in expression (11). We
will therefore solve this system in the Banach space Ep introduced above.

In the following technical lemmas, we study the linear and nonlinear terms separately. For the linear term
involving the initial data, note that by (4), since v > 0, we have iy € L'(R).

Lemma 3.1. Under assumptions (3) and (4), the following estimate holds:
(22) K (t,) * ol mr + [HEK(t,) * dollpr < Cn(T) (||l + ol 22 + Co),
where C > 0 is a constant depending on the parameters 3,7, u, and n(T) > 0 is given in (12).

Proof. From (11), for any ¢ > 0 and { € R we have |f?(t7§)| < 1. Consequently, the first term in the norm
| - |2y is directly estimated as:

(23) sup ([[K (¢, ) = dollm- + |HK(t,) * thol| =) < C|ltho]| =
0<t<T
We focus on the second term in || - || g,.. For the expression K (t,-) * g, for any fixed = # 0, we write

\K(tw—y)Hﬂo(y)lder/ (K (8, = y)lluo(y)ldy -

||

lz] ly|>5

K(t) w )| < [ 1Ko = llan(wldy = [ )

Il(t,f) IQ(t,I)
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| > bl

For the term I (¢, ), since |y| < I , it follows that [z —y| > |z| — |y| > 5. Then, using the estimate

(12), and since 0 < t < T, we obtam

B n(t) 1 n(T) 1
(24) |K(t,x —y)| <C pratp— <C .

Additionally, recalling that g € L'(R), we have

n(f) 1 . n(T) n(7) .
25) Li(t,x) < C dy <C C - .
( ) 1( 755) = t% 1+ |£L" S‘T |U0(y)| Y= t% 1+ | | ||u0||L1 = t% (1 T ‘.Tl)mln(l’v) H’UJOHL1
For the term I»(¢,x), since |y| > 2 by assumption (4) we have
Co Co Co C

W= G = T DA+ o = G e T+ ol

Fixed a parameter 1 < ¢ < +00. Then H
By (12), for 0 < t < T, we obtain

ﬁ” < Cy < 400. Choose 1 < p < +oosuch that 1 =1/p+1/g.
y‘ La

n(T) ||_1
(26) Kt ) <C e H 1+ [z]

1
Lr t2

Thus, applying the Hélder inequality, we deduce

Co / 1 Co 1
Lt,s) < ———— K(t,x—y dy < Kt )|ee ||——
@) 2(00) < Tl o G I < ey e | T
Co Cp,q T](T) < Co C U(T)
STy 2 S Grje)™0D 4

Gathering estimates (25) and (27), we obtain

(28) sup 17
0<t<T

(L+la)™ VKt o | < On(T) (ol + Co).

Finally, the expression HK (t,-) * g, follows from the same arguments, using the pointwise estimate for
HK (t,z) given in (12). O

Lemma 3.2. The following estimates hold:

/tK(t—T,-) * (0 0y + 0 0,0) (T, - / HE(t —7,-) * (40,0 + 0 0,0) (7, -)dr

(29) Er

<crt (1) (1+7%)) (s, + ||v|\ET> :

Proof. As before, it is enough to consider the expression fot K(t—7,-)x* (ﬂ 0, U+ 5'9517) (7,-)d7. Using known
estimates for HK (t—,-), the expression fot HE (t—7,-)* (@pu+10 8,0) (7, -)dr follows the same arguments.

We start by studying the first term in the norm || - || ., to this end, we will write @0, as 30, (a?). First,

C
observe that by (11), for any ¢ > 0 we have H |€ |K H < T Additionally, using well-known properties
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of the Hilbert transform H, along with the fact that H*(R) is an Banach algebra for s > 2, it follows that:

/K (4 P o]
) < g, [ o (it e+ )

1 ~ ~
<CT= sup (||la(t,)[F + 19t )17-)
0<t<T

1 ~ ~
<CT=(|all gy +1I9] )

Now, we will focus on the second term in the norm || - ||g,.. For any fixed  # 0, we write

t t
/ K(t—7,) % (W0yu + 0 0,0) (1, x)dr :/ / " K(t—7,2—y)(00,0+00,0)(r,y)dydt
0 y|<5

11 (t,:E)

¢
+/ / ‘ ‘K(t—T,:c—y)(ﬁ@mﬂ—i—f;@mf})(ﬂy)dydt.
0 Jly|>F

Is (t,ﬁ)
where we will estimate each term separately.
For the term I (¢, ), since |y| < Iiz‘ and 0 <t —7 < T, by estimate (24) we have
() 1
(t—7)z 1+ x|

Then, using the Cauchy-Schwarz inequality, the continuous embeddings H*(R) C H*(R) C L*(R) and the
fact that 0 <t < T, we find

hit.s L s L GG + el v
|37| (t—7)2 Jiy <zt

|5U|/ t—T

|$|/ - (lla(r, ez 167, )llas + 18 )2 1907, ) m=) dr

2

77( ) dr ~ )12 Blr 2
ce2@ ([ (t_T);)Oiggt(lw, Wy + 57,

n(T) 1 o=112 ~112
T>
T+ 2| (llall%, + I91%,)

<o NDTE
<O el

|K(t—T,x2—y)| <C

/ a(r l|Bya(r, 1) + [5(r, )10, 5(r, v) ) dydr

N)\»—-

<C

(lill gz + [18ll52)°.

For the term I5(t, z), since 4,0 € Er and |y| > %, we have

- < 1 1 . < C 1 .
lu(r,y)| < g W il Er < g W (fa{yoRe

and similarly

[o(m,y)| <

2]z -

c_ 1
73 L+ )=
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Additionally, note that by the first estimate in (12), and since 0 < t — 7 < T, it follows that

T
(=7 < 020
(t—r7)2
t
d
Therefore, using again the Cauchy-Schwarz inequality and the fact that / 177-1 < C < 400, we can
. o T2(t—1T)2

write

n(T) . /t 1 / .

L(t,x) <Corrrto— — K(x —y,t—71)||0 dyd
2( ,.’L‘) — (1+ ‘(E|)mm(1’7) HU’HET o T% ]R‘ (.'L' Y, T)H yu(Tay” yat
n(T) _ /f 1 / .
C—————— — K(x —y,t—1)||0 dyd
+ (1+|x‘)m1n(177) 9] &7 o 1% R| (z —v, )10y 0(7, y)|dydr

n(T) - /t 1 .
33 <Cr"-=7="F—F— _ s ) | gnd
( ) — (1 + ‘xl)mm(lﬁ) Hu”ET 0 T%(t _ T)% ||U(T )HH T

n(T) _ /t 1 N
+C—--————|0 1 T ||U\T, - d
(1+|x‘)mm(1ﬁ) 9l 2 o Ti(t—r)EH (7, M zrdr
n(T)

~ ~ 2
= W(HUIIETHIUHET) :

Gathering estimates (32) and (33) into identity (31), it follows that
t
sup tz H(l + |I|)min(1,"/) / K(t—1,-)* (ﬂ 0,1 + 1733:’5) (7, -)dr
0<t<T 0

1 1 ~ ~ 2
<CT2n(T)A+T2)(|ldlle, + 9] e.)"

[,

d

Once estimates (22) and (29) have been established, we choose a time Ty < 1. From the expression of
- - - 1
(7o) in (12), it follows that n(Tp) < C and 1+ n(Tp) (1 + T02> < C, for some numerical constant C' > 0.
Consequently, estimates (22) and (29) take the form

|E(t,) * dolly, + IHE() %ol < C (ol + Il s + Co),

t
+ ‘ / HE(t—7,) * (00,0 + 00,0) (7, -)dr
E: 0
To

/Ot K(t—r1,)x (ﬂ@xﬂ + ﬁ@xf))(T, dr

Eg,
~1 5 2
<CTg (il e, + 9] e)"
Next, we choose Ty sufficiently small, namely

1
(4C (1ol 2= + lltiol L2 + Co))?’

so that the Picard iteration scheme yields a solution (@, ) € Eg to system (21). This completes the proof
of Proposition 3.1. (]

To <

Second step: uniqueness of solutions of the system (19).

Proposition 3.2. For any fized time 0 < T < 400, the system (19) admits a unique solution in the space
C([0,T), H*(R)), with s > 3.
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Proof. Suppose (t1,01), (U2, 02) € C([0,T], H*(R)) are two solutions corresponding to the same initial datum
g, and define u := @ — Ug, v := 07 — U2. Then u and v satisfy:

Oy + 0,1y + 20,0 + vO, 01 + 020,V + fHU — pd?u = 0,
Opv + H(u0, 01 + 20,0 + VO, 01 + D20, V) + BHV — pud?v = 0.

Hence, we obtain:

1d
§%||u(t,)|\%2 = —/ (uaxul)udz—/ (uzﬁxu)ud:z:—/ (vﬁxvl)udx—/ (v20,v)udz
R R R R
(A1) (B1) (Az2) (B2)
— plha(t, )%
1d
ia\lv(t,)ﬂiz = —/’H(uc%ul)vdx—/'H(uzaxu)vdx—/H(V@xvl)vdaz—/H(vgazv)vdx
R R R R
(As) (B3) (Aq) (Ba4)
— ul[v(t, )%

Here, we need to estimate the mixed terms on the right-hand side. Some of them can be handled using
similar arguments; therefore, we will only outline the main ideas.

The terms labeled (A;), for ¢ = 1,...,4, share the generic form /(f@zh)gda:, with f,g € {u,v,Hv}

R
and h € {@1,0;}. Using Holder’s inequality, standard properties of the Hilbert transform, and the Sobolev
embedding H*~(R) C L*®(R) (since s — 1 > 1), it follows that:

‘ /R (FO,h)gdx

Thus, we obtain:

< |1£0:hlr2 llgllze < 10:h]l L €]l 2 llgllz2 < Cllhlla=(Ifll7= + llglZ2)-

4

(34) DA < Cllanlae + Iollz)(lallZa + [[v][Z2)-
i=1

The terms labeled (B;) have the generic expression / (h0,f)gdz, where f and g are as above, and
R

h € {ia,02}. Using arguments analogous to the previous ones, we then write:

/R (hd,f)gdz

Applying the discrete Young inequalities, it follows that

< ||hdaf |2 [Igllze < N02fl L2 Ihll~llgllze < ClIEll g 1Al

g||L2~

C
ClIEll g 1Pl zellgl 22 < pll €115 + Ellhllqullgl\%m
Thus, we obtain

c, . -
(35) > IByl < E(lluzllqu T2 F) (lalZe + [vIZe) + pllullF, + plvil,
i=1
Combining estimates (34) and (35), and applying Gronwall’s inequality, we obtain

(e, NZz + v (E)IZe < (a0, )72 + [v(0,)]72) x

Lo - 1, . 1, .
X exp (C /0 (s e + 017 e + Zla(r, Wire + PR -)||§{5)dr> ;
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where the integral converges since y, 4a, 01,02 € C¢HE. Thus, as u(0,-) = 0 and v(0,-) = 0, we conclude
that 121 = 1762, and 171 = 172. O

Step 3: End of the proof of Theorem 1.1. Let ug be the initial datum satisfying assumptions (3)
and (4).

On the one hand, using estimates (23) and (30) (where we write Hu instead of ©), together with the
Picard iteration scheme applied to the fixed-point problem

(36) u(t,”) = K(t,-) *ug — /0 K(t—7,)* (udyu+ Hudy(Hu)) (7, ) dr,

we obtain the existence of a time T = T{)(||uol| <), verifying

1 1

2 (4Cuoll7-)?’
and a solution u € C([0, T, H*(R)) of equation (1).

(37) T5(vo) =

On the other hand, considering the same initial datum wug, and defining ug := wug, v9 := Hug, by Propo-
sition 3.1 there exists (@,7) € Ej,, a solution of system (19). Moreover, by the continuous embedding

Ej, C C([0,To], H*(R)), we have (i, 3) € C([0,Tp], H*(R)).
Finally, observe that (u, Hu) € C([0,T{], H*(R)) is also a solution of system (19). Defining
To := min (To,Té) ,

it follows from Proposition 3.2 that @ = u and ¥ = Hu on the interval [0,Tp]. Since @ and ¥ satisfy the
pointwise decay estimates (20), the desired estimate (5) holds. This concludes the proof of Theorem 1.1.

3.2. Proof of Proposition 1.1. Arguing by contradiction, assume that (7) and (8) hold. Under these
assumptions, for any fixed 0 < ¢ < Tp, we will prove that the solution u(t,x) of equation (1) develops the
following asymptotic profile with respect to the spatial variable z:

u(t,z) = %(D(M(uo),t,u) +o(t) (1> L Ja] = oo,

|z

where the expression ® (M (ug), ¢, u), defined in formula (54) below, does not depend on the variable z. This
asymptotic profile yields a contradiction with the assumptions (7) and (8).

Returning to the mild formulation (36), we analyze its linear and nonlinear parts separately.

Lemma 3.3. For the linear part, assuming (6), for any t > 0 the following asymptotic profile holds:
51 t 1

(38) K(t,") *ug(x) = —% M (ug) + o(t) (|x) ) lz] > 1,

where the quantity M (ug) # 0 is defined in expression (6).

Proof. For fixed t > 0 and |z| > 1, we write
K (t,) % uo(z) = / Ktz — y)uo(y)dy
R
(39) — K(t,2) / uo(y)dy + / (K(t,z — y) — K(t,2))uo(y)dy
R R

=K(t,z) M(ug) + /]R (K(t,z —y) — K(t,z))uo(y)dy.
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For the first term, using the asymptotic profile (16), together with the fact that, by estimate (14), we
have I(t,z) = o(t) ( L ), it follows that

Tzl
sin(5t) sin(5t)
x

K(t,x)M(ug) = — .

s M (uo) + I(t, )M (uo) = —

M (ug) + o(t) (El‘) . |z > 1

For the second term, we have

(40) /R(K(t,x—y)—K(t,x)) ()dy—o()(|gls|>, |x| > 1.

To prove this, we write
[ (Ko=) = Kt uo(wdy

" :/|<|r (K(t,z —y) — K(t,z) dy+/| L (K (t,x —y) — K(t,2))uo(y)dy

/yld (K(t,z—y) — K(t,2))u dy+/y u K(t,x — )uo(y)dy—K(t,g;)/ wo(y)dy,

|z
ly|>5

I (t,x) I>(t,x) I3(t,)
so that each term must be estimated separately.

To estimate the term I (¢, ), we use the following pointwise bound:

C
(42) [0 K (t, )] < et t>0, x#0,

for some constant C' > 0 depending on . This estimate follows from arguments similar to those used in the
proof of (12). For the reader’s convenience, a detailed proof is provided in Appendix A.

Using (11) and well-known properties of the Fourier transform, we deduce that K(t,-) € C}(R) for any
t > 0. By the first-order Taylor expansion, for some 0 < § < 1 we can write

(43) K(t,x —y) — K(t,z) = —y0, K(t,z — 0y).
Moreover, since |y| < m, it follows that |x — Oy| > |z| — Oly| > |z| — |y| > % Therefore, using (42) we
obtain
C C
(44) 0. K (t, 2 — 0y)| <

7 <« =
T le =0y T a2

With this estimate, and the fact that the initial datum satisfies (4) with v > 1, the term I3 (¢, x) is controlled
as

Co

—d
T+

nels [ K ) - Kol < [ oK o)

lyl<i5t
<£ dy<0_0<1)
g (L+ )y — a? =)

To estimate the term I1(t, ), note that since |y| > 5 | and uo(y) satisfies (4) (with v > 1), by applying
the Cauchy-Schwarz inequality and using the estimate (26) (with p = 2), we obtain

Co Co/ 1
Ltz g/ Ktz —y)|——dy< —> | |K(t,z —y)|——d
L2(t.2)] H>m| (0~ ) e 9 < s K =)

1 C n(t) 1
0 K¢, )1 ‘1+|y| LQthéoa)(lx').

(45)

(46)

_\lW
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Finally, to estimate the term I3(t, x), we use the asymptotic profile for K (t, z) given in (16), recalling that
I(t,xz) = o(t) (i) Moreover, since ug(y) satisfies (4) (with v > 1) we have uy € L'(R). By the standard

[
dominated convergence theorem, it follows that

lim luo(y)|dy = 0.
|zl =00 Jjy|> Lgl
Therefore,
[sin(81) e
() it < (S5 4 1) [ ol = o) ()

Having proved estimates (45), (46), and (47), it follows from identity (41) together with equality (40) that
the desired profile (38) holds. O

Lemma 3.4. For the nonlinear part, assuming (7) and (8), we obtain that for any 0 < t < Ty (where the
time Ty > 0 is given in Theorem 1.1), the following asymptotic profile holds:

t
/ K(t—7,-) * (udpu+ Hud,(Hu)) (7, ) dr
01 t |a:| > 2M..

-1 UO sin (8(t — 7)) (/R (wdyu+ Hud, () (. y)dy> dr] 4 olt) <|i|> ,

Proof. Note that it is enough to study the first term fot K(t—r,-)x* (u Bmu) (1,-) dr, since, by assumptions
(7) and (8), the second term fot K(t—7,) % (Hud,(Hu))(7,) dr can be treated by the same arguments.

Following the same decomposition used in identities (39) and (40), for fixed 0 < ¢t < Ty and |z| > 2M,,
we write

/ot /R K(t = 7,2 = y)u(r,y)0yu(r, y)dy dr

— /OtK(t —7,7) (/]Ru(T7 Y)dyu(r, y)dy) dr

Ii(t,z)

-l-/o /||<Z (K(t—T,$—y)—K(t—T,x))u(T,y)ayu(T’y)dydT

(49) Iy (t,x)

t
+ / / K(t — 7.2 — y)u(r,y)dyu(r,y)dy dr
0 Jly>%

Ig(t,w)

_ /0 K(t—r1,1) </|y>§ (T, y)dyu(T, y)dy) dr,

I4(t,£E)

where each term on the right-hand side must be analyzed separately. Without loss of generality, we may
assume that 2Me > 1.

For the first term, using the identity (16), we obtain

Lt z) = —% /0 Csin (Bt — 1) ( /R u(r,y)dyu(r, y)dy) dr + / Tt ) < /]R u(r,)dyu(r, y)dy> dr,

0



NONLOCAL NONLINEAR MODEL 17

where, for the second expression above, using estimate (14), the Cauchy-Schwarz inequality, and the contin-
uous embeddings H*(R) C L?(R) and H*(R) C H'(R), since s > 3, it follows that

=) ([ wtrdgutraiy) arl < S ['6= 28 utr s el i

<— su u(T. s |-
< <0<£’TO Jutr. )l

Therefore, we obtain

(50) Ltz) = -+ /Ot sin (B( — 7)) (/Ru(r, )d,u(r, y)dy> dr+ o(t) (é) .

T

For the second term, from identity (43) and estimate (44), applying the Cauchy-Schwarz inequality
together with assumption (8), it follows that

c [t c [t
Ltz << / / llu(r, ) 1Byu(r, 9)ldy dr < < / / [yl )||8yu(r, y)ldy dr
0 Jyl<lz = Jo Jr

.’L‘Q
Ct
61) <5 sup, Mlelutras ) ( sup e e
0<7<To 0<7<T)o

For the third term, by assumption (7) and the fact that |y| > ‘gj—l > M., together with the Cauchy-Schwarz
inequality and estimate (26), we have

t
Co
I3(t,.’1)) S / / |K(t —T,T — y)' 1 |a U’(T y)ldy
ly|> L5t T2 ‘ |1+e

< |x|1+5/ =y (/ |K(t — 7,2 — )||ayu(7,y)|dy> dr
Cs 1
<0 [ U= loe Wt s

<o ([ 1) (Lo, it
1 1 T, s
“lzte \Jo r2(t—1)2 OSTST() "

c
< |l’|1+5 sup HU’(T7)”Hg

0<7<Tp

x
Finally, since u(r,-) dyu(r,-) € L'(R) for all 0 < 7 < ¢, similar arguments as in (47) yield

1
(53) Ii(t,z) = o(t) (|x> .
Gathering the identities and estimates (50), (51), (52), and (53) into identity (49), the desired asymptotic
profile (48) follows. O

End of the proof of Proposition 1.1. Returning to the mild formulation (36) and using the asymptotic
profiles (38) and (48), for any 0 < t < Ty and |x| > 2M., the solution u(t,x) satisfies

u(t,az):% —sin(ﬁt)M(uo)—/Otsin (Bt - 7)) (/R (uayu+7-lu8y(’z’-lu))(r,y)dy> dT} +olt) (|313|>
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where, defining

(54) (M (ug),t,u) =: —sin(Bt)M (ug) — /Ot sin (B(t — 7)) (/R (u Oyu + Hu %(Hu)) (T, y)dy> dr,
we can write
u(t,z) = %‘I)(M(uo),t,u) +o(t) <le|> o el > 20

From this profile of u(t, x), we can derive a contradiction, which invalidates both assumptions (7) and (8).

1
o(t) () ‘ .
||
By the definition of the term o(t) (‘%), for |<I>(M(u0)7t,u)| > 0 there exists M; > 0 sufficiently large so

\
that ‘o(t) ( ! )‘ < ﬁ |® (M (uo), t,u)

[

We write

lu(t, )| = ‘i@(M(uo),t,u) — (—o(t) ( 1 >>‘ > % |®(uo, t,u)| —

||

, for any |z| > M;. Hence, for || > max(2M,, M;), we obtain
1

(55) o]

|® (M (uo), t,u)| < |u(t,z)|.
Fixing the time ¢t = %, assumption (7) yields

1 T 1 C 1
2‘@ <M(u0),20,u> < =2

which gives us a contradiction by letting |z| — +o0.

o] 7 (o) fafte
On the other hand, from (55) it follows that

2| > max <2ME, M&) :
2

1
§|<I>(M(u0),t,u)\ < |z| |u(t, z)], |z| > max (2M., M),

and hence, for any fixed time 0 < t < Ty, we obtain u(t,-) ¢ L*(R,|z|dz), which contradicts assumption
(8).Proposition 1.1 has now been proven.

4. GLOBAL IN TIME PROPERTIES

4.1. Proof of Proposition 1.2. From equation (1), we get:

%%Hu(t’)nig = —/]R(Hu)ﬁm(?-iu)udm—u||u(t,~)||?-{1 < —/R(Hu)az(fz'-[u)udm.

To control the term on the right-hand-side, we write:
1
—/(Hu)@w("ﬂu)udx = 5/(7—[11)2 Opudr < ||0pul| oo ||ul22,

R R

and applying Gronwall’s inequality, we obtain:
t
(56) Jutt, ) < ol exo ([ 10ru(rolo 7).
Using this estimate, we establish the blow-up criterion (9) as follows. First, assume that
(57) lim ||u(t, )| gs = +o0.
t—T

Arguing by contradiction, suppose that

T
(58) / |8pu(t, )| L= dt < +oo.
0
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Define
T
Mo i= Juallie exp ([ Joutt o~ dt | <+
0

Then, from estimate (56), for all 0 < ¢t < T, we obtain

(59) lu(t, )72 < Mo.

Now, recall that for any initial datum vy € H*(R) with s > %, the existence time Ty = Tp(vg) > 0 of the
corresponding solution v € C([0, Tp], H*(R)) to equation (1) is given by the expression (37):

1

1 1
2 (1o 2

1
To(vo) : — .
b(v0) 2 4Clwole P

<

Consequently, the time Tp(vo) is a decreasing function of ||vg||2,. This property implies that there exists a
time 0 < Ty < T} such that for any initial datum satisfying [jvg||2, < My, the associated solution v € C;H?
exists at least on the interval [0, T}], and satisfies v € C([0, T3], H*(R)).

In this context, fix 0 < ¢ < Ty, and consider the initial datum vy := u(T} — ¢, ), which satisfies [|v||2.
by the bound in (59). As mentioned above, the corresponding solution v(¢,z) in defined over the interval
[07 Tl] .

Therefore, gathering the solutions u(t, ) and v(¢, z), which arise from the initial datum ug and vy respec-
tively, we define the function

u(t,-), for 0<t<T, —c¢,
v(t,-), for Ty—e<t<T,—e+T.

Since 0 < € < T it follows that T, — e + 17 > T, implying that a(¢,-) is a solution of equation (1) with
initial datum wg, defined on the extended interval [0, T, — ¢ + T3], satisfies @ € C([0,Tx — ¢ + T1], H*(R)).
This contradicts assumption (57).

Now, suppose that

T
(60) / |0zu(t, )| o dt = +oc.
0

Again, arguing by contradiction, assume that

lim ||lu(t, )| g < +o0.
t—Tx

Then, the solution u(t,x) of equation (1) can be extended beyond time T, and there exists an € > 0 such
that v € C([0, Ty + €], H*(R)).

Since s > %, applying the Sobolev embedding yields

T
/ 10wu(t, )| dt < T*( sup ||u(t,~)|Hs) < 400,
0

0<t<T,+e

which contradicts (60). Therefore, Proposition 1.2 is proven.
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4.2. Proof of Proposition 1.3. Assume that (10) holds. Using this fact, we will show that the pointwise
estimate (5) holds for all times 0 < ¢ < Ti. Specifically, define

g(t) = ¢ (101 + )™ D, ) + 11+ )™ (e, )1 )

and we will show that g(t) < 400 for every 0 < t < T.

Using the mild formulation of the solution (¢, z) given in (36), we have
u(t, ) = ) * ug —/ K(t—7,) * (udpu + Hudy(Hu))(r,") dr,
and
¢
Hu(t, ) =HEK(t,-) *ug — / HEK(t —7,-) * (u0pu + Hudy(Hu)) (1, ) dr.
0

Since u(t,-) and Hu(t,-), as well as K (¢,-) and HK (¢, -), satisfy the same estimates, we introduce the unified
notation

(61) u(t,-) =K(t,-) *ug — /0 K(t—7,-) *xudu(r,)dr,

where u € {u, Hu} and K € {K,HK}, for simplicity of presentation.
With a slight abuse of notation, we rewrite
(62) g(t) =2 (1 + [x))™ "D u(t, )|

Using the integral formulation above, we obtain

)

t
g(t) < t2)|(1 + |z))™ DK (¢, ) * ug|| oo +£2 H(HIw)”‘“‘“”)/K(t—T,.)*uawu(T,-)dT
0

(63)

L()C
g1(t)
g2(t)
where each term on the right-hand side must be treated separately.
For the first term, by estimate (28), for any 0 < t < T, we directly have
(64) g1(t) < Cn(T*)(HUOHLl + Co) =: &p.
For the second term, using the decomposition as in (31), we obtain
t
/ K(t —7,) xudyu(r, z)dr
0
(65) B t t
= Kt — 7,2 —y)udu(r,y)dydt + Kt —71,2—y)udu(r,y)dydt.
0 Jlyl<lgt 0 Jy>1g
I (t,z) Io(t,2)

The term I (¢, z) has already been estimated in (32) (with u in place of @ and v), yielding for 0 < ¢ < T},

ntn) <o) ( / ; j’i);) sup [u(r, )%

0<r<t
1
66 n(Ty) 17 NE
(66) <C(1+|x|)mm<1m B la(r, [
¢

T e
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For the term I5(t,x), using g(¢) as defined in (62), we write

1 |
T2 (14 |y min(1,y) |y T,
2 (t,2) // K(t = 7 —y)| I g )
v E(L+ [glmm()

< T \x|)mm ’7)/ p= /|K t—1,2—y)||0yu(r,y)|dydr.

Applying the Cauchy—Schwarz inequality and the estimate (26) with p = 2, we obtain

c "g(r)
h(t,2) < e |22t = 7 hoyucrnar

)
Cn(T.) |

S+ \x|>mm<lﬂ> / =53 oI ldr
Cn(
)

B (s il / T

(14 [a)mint) \g<ror, t—7)iT2

€2 /t 1
- - dr.
(1 + ‘./L'Dmln(lv')/) 0 (t _ T)%T% g(T) T

Combining estimates (66) and (67) in (65), we obtain, for 0 < ¢ < Ty,

t t
1 1 1
g2(t) St% ¢ +t%€2/ —g(T)dr < T*é ¢, th%Qfg / —g(7)dr
68 o (t—7)272 o (t—71)272
(68) L ¢ 1
=:C3+12 ¢, / —————g(r)dr.
o (t—7)272
Finally, combining (64) and (68) in (63), we conclude that
t 1 t 1
g(t) < Co+ €3+ te ¢y / —g(T)dT =: €4 + tz s / ———g(r)dr.
o (t—7)272 o (t—7)272

Once we have this estimate for g(t), we invoke the following Gronwall-type inequality. For a proof, see [5,
Lemma 3.4].
Lemma 4.1. Let T > 0 and g : [0,T] — R be a non-negative and locally bounded function, which for any
0 <t <T, satisfies:

t
1
(69) o) < M+ My [ ——rg(ryir
o (t—7)272

for some constants My, My > 0 possibly depending on T. Additionally, define

1
dr
M::/ —_—.
o (1—7)272

If My < ﬁ, then it follows that g(t) < My for every 0 <t <T.

Within the framework of this lemma, we choose a time 0 < T7 < T}, and set M7 = €4 and M, = Tlé &s.
Thus, for any 0 < ¢t < T3, the function g(t) defined in (62) satisfies

¢
1 1
g(t) <y + T3 C, / ——g(r)dr,
o (t—71)272
which corresponds to the estimate (69).

1
We then fix 0 < Ty < T sufficiently small so that T)* €5 < 2. Consequently, it follows that g(t) < €4 for
every 0 <t <Tj.



22 MANUEL FERNANDO CORTEZ AND OSCAR JARRIN

Thereafter, we can iterate this process up to the time T, as follows. We now consider the initial datum
u(Ty,-), which, by assumption (10), satisfies u(71,-) € L*(R).

Remark 2. Returning to the mild formulation (61), recall from Remark 1 that K(t,-) ¢ L'(R). Conse-
quently, even assuming that ug € L*(R), it is not clear whether this information allows us to deduce that
K(t,) xug € L*(R). Therefore, to the best of our knowledge, it remains open whether the L-integrability of
the initial data persists for the associated solution.

For any time ¢ > T}, we then consider the fixed-point equation
t
u(t,)=K(t—"T, ) *u(Ty,) — K(t—r7,-)xudyu(r,-)dr.
T
Since u(Ty,-) € H* N LY(R), estimates (64) and (68) remain valid. Using again Lemma 4.1, we obtain,
for some constant ¢, > 0 and for a sufficiently small time T, > 0, that g(¢) < €, for any Ty <t < Ty.

Finally, by repeating this procedure a finite number of times, we reach the time T,. This concludes the
proof of Proposition 1.3.

APPENDIX A. PROOF OF ESTIMATE (42)

Using well-known properties of the Fourier transform, along with identity (11) and the fact that 8562“”5 =
2mix 2778 integrating by parts we write

0 +oo
8IK(t,£L') _ / eQTrw;fié-e—ufzt—z,Bt d€ +/ e2ﬂzw§i£e—u§2t+z,@t df

—00 0
_ 1 /0 ) ( 27ri9c£)-€ —p€2t—ipt d§ + 1 /+OO ) ( 27ri9c§)-€ —p€2t+iBt d€
T omia | 8¢ NE omiz J, 6 NC

1 0 omizé  —pclt—ift 2 1 e omixé | —pclt+ift 2
=5 e e (1—2ué t)df—% e e (1 —2u&%t) de.
—o00 0

Note that, in contrast with identity (13), the symbol ¢ (corresponding to the derivative d,) cancels all
remaining terms at £ = 0~ and £ = 0*. Consequently, we can repeat the same argument to obtain

0. K (t,x)

1 0 TLT —p€2t—i 1
= - m/ e (€258 )e MO (1 — 208%t) de

+oo ) 0.
T ntiat / D€ )e ™M1 — 20ut) dE

0
= 4471_212_1:2 </ (627”':05)85 (ef,u§2t7iﬁt(1 o Q#th)) df + (e2wiw£)(67u§2t7iﬁt(1 . 2ﬂ£2t)) ’(i >

1 e LT —p€2t+i TLX —p€%t+i oo
yr </ (€2 7E) D (e HETHIBL (1 — 20€%1)) dE 4 (e2E) (e HETHIBY (1 72#5%))’ >
T4ix 0 0
1 0 2mizé  —pEt—ift 2+3,2 e 2mizé  —pEt+ift 2¢3,2
= T I e e (46t — 6ust) d€ + e?mite (42634% — 6puct) de
oo o
e—iBt _ oipt
CdAmZia?
1 sin(St)
= ———=J(t — .
42422 (t,2) 472422

As before, using the rapid decay of e_”fzt, we obtain

+oo
It < [ e VIR (42 VR + ul e ) Vide < C < 4,
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some constant C' > 0 depending on p. Hence, for x # 0, the desired estimate (42) follows.
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