ON THE BLOW-UP FOR A KURAMOTO-VELARDE TYPE EQUATION

OSCAR JARRIN AND GASTON VERGARA-HERMOSILLA

ABSTRACT. It is known that the Kuramoto-Velarde equation is globally well-posed on Sobolev
spaces in the case when the parameters 1 and 2 involved in the non-linear terms verify v1 = %
or 72 = 0. In the complementary case of these parameters, the global existence or blow-up of
solutions is a completely open (and hard) problem. Motivated by this fact, in this work we consider
a non-local version of the Kuramoto-Velarde equation. This equation allows us to apply a Fourier-
based method and, within the framework v2 # %4 and 2 # 0, we show that large values of these
parameters yield a blow-up in finite time of solutions in the Sobolev norm.

1. INTRODUCTION AND MAIN RESULT

The classical Kuramoto-Velarde equation describes slow space-time variations of disturbances
at interfaces, diffusion-reaction fronts and plasma instability fronts [6, 7]. The Kuramoto-Velarde
equation reads as:

(1) Opu+ 02u + Opu = 71 (9pu)? + 2 udzu,

where u : [0,400) x R — R is a real-valued function and ~;,~2 denotes constant parameters in
R. This equation also describes Benard—Marangoni cells, which appear in the physical phenom
of a large surface tension on the interface in a micro-gravity environment [3, 8]. Precisely, the
non-linearities 1 (9;u)? and 2 u0?u model pressure destabilization effects striving to rupture the
interface [10].

A generalized version of the Kuramoto-Velarde equation (1) is the dispersive Kuramoto-Velarde
equation, which, for a parameter v > 0 reads as:

(2) Opu + 02u + adu + Otu = v (9pu)? + 2 ud2u.

This equation models long waves on a viscous fluid flowing down an inclined plane and drift waves
in a plasma [5, 12]. Mathematically speaking, the dispersive effects in this equation are given by
the additional term ad3u.

The analysis of equation (2) posed in the whole line R was studied in [11]. In this equation, the
effects of dissipative terms 0%u + d2u are (in some sense) stronger than the ones of the dispersive
term ad3u. This fact allows the author of [11] to apply purely dissipative methods in order to
develop a well-posedness theory in Sobolev spaces. Precisely, the local well-posedness is proven in
[11, Theorem 1], in the setting of non-homogeneous Sobolev spaces H*(R), with s > —1. The value
s = —1 is the optimal one in the sense that the flow map of equation (2) is not a C2-function in
H?*(R) with s < —1, see [11, Theorem 3|.
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As usual, the existence time in the local well-posedness theory, which we shall denote by Ty, is
driven by the size of the initial datum wu:

1
To<min|—— 1],
0~ <<cuuo||Hs>1/0 )

where C' and 6 are positive quantities depending on s > —1. In addition, the solution u also
verifies the following regularity property u € C((0, Tp], H*°(R)), where we use the standard notation

*([R) = () H(R)

o>s

These same results hold for equation (1) (when o = 0) since, as mentioned above, the dispersive
term ad2u does not play any substantial role in the well-posedness theory.

Always in the setting of the H®-space (with s > —1), a remarkable feature of both equations
(1) and (2) is that the global well-posedness issue strongly depends on the parameters v, and 7y, in
the non-linear terms. In fact, in [11, Theorem 2] it is proven that local solutions (obtained in [11,
Theorem 1]) extend to global ones as long as:

1
Y2 = Lor 2 = 0.
2
In order to explain this fact, it is worth giving a brief sketch of the proof.
e The case v = % Global in time existence of solutions essentially follows from a control

on the Lf—norm of solutions. Remark that the second non-liner term can be rewritten as
udu = §8§(u2) — (9pu)?. Thereafter, since we have u € C((0,Tp], H*°(R)) then u solves

(1) and (2) in the classical sense, and taking the inner L?-product of these equations with
u we get the following energy estimate:

_ 2 3 4
thH HL2 = /8 uudr — /8 uwudxr — /8 vudx
+(n—72) / (Opu)?udx + e / 9% (u?)udz.
R 2 Jr

Observe that it holds « / aguudm = 0. Moreover, by the Cauchy-Schwarz inequality and

R
the relationship ab — b < iaQ (with a,b > 0), we have
1
—/ Eﬁuudx—/&%uudx < —u(t, )3
R R 4

On the other hand, concerning the non-linear terms, by our assumption v = % and inte-

grating by parts we obtain

(v1 —72) / (Opu)?udz + 72/ 0% (u?)udx = (ﬂ - 72) /(amu)Qudm = 0.
R 2 Jr 2 R
Then, we are able to apply Gronwall inequality to get

4
lu(®)1Z2 < lluoll72¢"

which allows to extend the local solution to the whole interval of time [0, +00).
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e The case 3 = 0. Denoting by w = 0,u, we begin by stressing the fact that this function
solves the equation

opw + 02w + adPw + Otw = 2y wdw.
In addition, we obtain the standard non-linear transport-type term wd,w, which verifies
/ wdywwdx = 0. Thus, the linear terms are estimated as above, and we can obtain the
R

control:
|w(®)||F2 < [Jwo72e.

To the best of our knowledge, the global existence of solutions in the complementary case of the
parameters y; and 7o, i.e.

(3) Yo # % and 72 #0,

remains as a completely open (and hard) question. In this context, the main objective of this short
article is to give some lights on the possible blow-up of solutions in this case.

The blow-up issue for non-linear PDEs is not trivial, and in some cases the original model must
be slightly modified in order to apply a rigorous method to show blow-up in finite time of solutions.
The main example is given in [9], where the author studies the blow-up of solutions for a one-
dimensional toy model of the three-dimensional Navier-Stokes equations. This idealistic model of
the Navier-Stokes equations was generalized in [4] to the cases of two and three space dimensions,
with the additional feature that the divergence-free condition is preserved. See also [1] and [2] for
other examples concerning non-linear parabolic equations.

Inspired by this fact, we introduce the following non-local version of equation (2):
2
(4) Oru + O2u + a(—@i)%u + Ou = ((—8%)%11) + You 2.

Here, for o € R, we recall that the fractional Laplacian operator (—92)% (in dimension one) can be
easily defined in the Fourier level by the symbol |{]|?. Concerning the regularity, equations (2) and
(4) are quite similar since they have the same order in all the derivative terms. This fact yields
that all the local well-posedness and regularity results mentioned above for the equation (2) also
hold for the equation (4).

In particular, for any initial data ug € H*(R), with s > —1, we can find a time Ty > 0 (which
depends on ||uo||gs and s), and we can find a functional space X7, C C([0, To], H*(R)), such that
equation (4) has a unique solution u € X7, . This functional space X7, 1s defined as

Xy = {u € C(0,7], H'(R)) : Jull xz, < +o0},
with the norm

[s|+1

| 0zult, )l 2

Isl
[ut, )las + sup 4 [Ju(t,-)]|r2 + sup
0<t<T 0<t<

Ul|xs, = sup t
[l xs, S v w

To
Here, the second and the third expressions are designed to successfully control the non-linear terms
in equation (4). The (unique) solution u € X7, is thus obtained by applying a standard fixed point
argument to a equivalent mild formulation (given in expression (9) below) of equation (4) . The
proof of this fact essentially follows the same arguments in the proof of [11, Theorem 1], so we shall
omit it.
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On the other hand, in contrast to equation (2), the non-local operators (—83)% and (—8%)% in
equation (4) equation have positive symbols [£|? and || in the Fourier variable. This fact is one of
our key-tools to use a Fourier-based method in order to show blow-up in finite time of solutions to
(4), when 71 and -2 verify the relationship (3).

It is also worth mentioning this method seems very difficult to be applied in equation (2): the local
operators 92 and 0, have complex symbols —i¢? and i€ in the Fourier variable, and consequently, we
loose all the sign information required to our method Fourier-based method. Nevertheless, equation
(4) may be seen as a useful modification of equation (2), in order to a better understanding on how
the structure of non-linear terms:

l 2
n((=02)%u) +rzudiu,
joint with sufficient conditions on the parameters y; and 7, (for instance (3)) can work together to
yield the blow-up of solutions.

Main result. We show that well-prepared initial data in equation (4) allows us to obtain an
explicit blow-up time of solutions. For s > —1, we shall consider an initial datum ug € H*(R),
explicitly defined in the Fourier level by the expression:

(5) up(§) = n1{e—3/21<1/2} (&)
Here, the quantity n > 0 is suitable set to verify the (technical) requirements:
n? > 2172Cy, when —1<s< 3,
n?>> Cy, when 3 <s,

(6)

with a constant Cy > 0 fixed big enough (see expression (18) below). In this setting, our main
result reads as follows:

Theorem 1.1. Let ug be the initial datum defined by (5) and (6). Moreover, within the framework
of the conditions (3), assume that 1 and 7y also verify

(7) Y2 <0<,

and

(8) % <M -2

with C1 > 0 big enough. Then, the solution u(t,x) of equation (4) arising from ug blows-up at the
time Ty, = 21n(2)’ and for s > —1 we have ||u(T%,-)| s = +00 .

3

The following comments are in order. First, observe that our initial data ug defined in (5) belongs
to all the Sobolev spaces. We thus obtain the blow-up of solutions to equation (4) even in the case
of a regular initial datum.

Conditions (7) and (8) on the parameters 7, and -9 are essentially technical requirements in
order our method to work. However, they highlight that these parameters can strongly influence
on the dynamics of solutions in equation (4).

Theorem 1.1 holds for the (non-local) Kuramoto-Velarde equation:

2
Opu + O%u 4 Otu = ((—8%)%u> + you 0%,



5

which is a particular case of equation (4) when setting « = 0. Moreover, setting 73 = 0 and
when the parameter o verifies 79 < 0 and % < —79, this theorem also holds for the original
Kuramoto-Velarde equation (1), with only the second non-linear term:

Opu + 02u + tu = o ud?u.

Here, it is interesting to observe the strong effects of this non-linear term in equation (1), which
essentially block the global existence of solutions when the parameter 7, is negative and |y is
large enough.

2. PROOF OF THEOREM 1.1
In this section we deal with the proof of Theorem 1.1. For the sake of clearness, the proof of all

our technical lemmas will be postpone to Appendix 3.

To begin, we consider Duhamel’s formula in order to recast equation (4) in the following (equiv-
alent) form:

t 2
(9) u(t,x) = K(t,-) * up(x) —|—/ K(t—rT,-)x* <’yl ((—85)%u> + 72u8§u> (1,-)dr,
0
where the kernel K (t,z) is explicitly defined by the expression
(10) K(t,l’) _ f*l (e—(_§2+af|3+f4)t> (x)7

with F~! denoting the inverse Fourier transform in the spatial variable. Equation (9) will be our
key-element in the proof of Theorem 1.1. In the sequel, we shall denote by T},q > 0 the maximal
time of existence of the solution wu.

To continue, let us state the following fundamental lemma.

Lemma 2.1. Let consider the initial data ug defined in (5). Moreover, assume (7). Then, the
Fourier transform of the solution u to (9) is positive, i.e. u(t,&) > 0, for all 0 < t < Typay and
£eR.

As mentioned, this lemma is proven in detail at Appendix (3). However, we highlight that
condition (7) on 1 and 7y, is one of the key-ingredients in the proof.

With this result at hand, we are able to prove our main technical estimate:
Proposition 2.1. Define recursively the following functions:
90(&) = Lye_3/21<1/2)(§),
9n (&) = Gn-1(8) * Gn-1(§), for alln € N*,

(11)

and
(12) Falt) = e~ 312 =5@"=Dgdn g5 411y € N,

Assume that v1 and 2 verify (7) and (8). Moreover, let Ty = QIHT(Q) Then, the mild solution u(t, x)
of equation (4) can be bounded by below in the Fourier level as follows:

(13) a(t, &) > n* fu)Gn(), forallneN, t>T,, and & € R.
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Proof. Remark that mild solutions of equation (4) write down in the Fourier variable as follows:
At €) = eft(*£2+a|5\3+§4) o (€)
" —t(—etalgirer) 5w 161D — ofi % (€25
b [ etk oy (€fax €la) - 2+ (€0) (7 )

0
Our starting point is to remark that assuming 0 < o < 1, for all £ € R we have

—& +olg +¢ <€+ +¢ < %54,

(14)

and then
o—t(—e2+algP+et) 5 -deet

Remark 1. In the case o« > 1 we can write

&t aleP €4 < St 1)

hence
ot raleP+et) 5 ~Batiet

and the subsequent estimates also depend on «. Consequently, with a minor loss of generality, we
can assume that 0 < o < 1.

Moreover, recall that by (5) we have @y > 0, and by Lemma 2.1 and the relationship (7) we also
have 1 (|€] * |€|a) — you * (£21) > 0. With these facts, we get back to (14) and we thus obtain

(15) a8 = e (e + /0 e HDE (3 (1] €[7) — 2 ¢ (€40) (7, )
We shall use this last expression to prove the estimate (13). The proof follows from an induction
process.
Step n = 0. Here, we will prove the estimate:
u(t,&) > nfo(t)go(§), forallt > T, and £ € R.
In expression (15), observe that the second term on right-hand side is positive. We thus write
Ut €) > e 2% g (€).

This fact, together with the definition of uy(§) and go(€) (given in expressions (5) and (11) respec-
tively) yield the inequality

~ Byt
u(t, &) > ne 2" go(9).
At this point, we state the following lemma:

Lemma 2.2. Let g,(&) be defined as in (11). For all n € N we have
Supp(gn) C {€ € R: 2" < [¢| < 2"} = (27,27,

Since Supp(go) C C(1,2), for all £ € R we get

_ 344 _ 3404 __
e 2% Go(6) > e go(9),
and thus, we can write
_ 3490+4

Aty €) > ne 2" Go(€) = ne 22" G (€) = nfo(t)Go(£).



Step n > 1. Let assume that
(16) at,6) >0 fac1(DGn_1(€), forall t > T, and € € R.

We shall prove that it holds for n. We get back to expression (15), hence we can write

t 3 4 ~ ~ ~ A~
a(t,ﬁ)Z/O 20T (yy (J€[ * [€]a) — et + (670)) (7, €)dr.

By our assumption (16) we get

t 3 4
7). alt,§) = 772n/o e 2L (1) (€Ga1 % €lGu—1) = 22801 * (€%G0)) (7, €)dr.

Thereafter, recall that by Lemma 2.2 we have Supp(g,_1) C C(2"~%,2"). In particular, the lower
bound 2"~! < |¢] and the recursive definition (11) yield

1€]Gn—1 * |&|gn—1 > 22(n_1):q\n71 * On—1 = 22(n_1)§n,

and
§n71 * (52/9\7171) 2 22(71_1)/9\71-

Moreover, recalling that by (7) we have 0 < v, and 2 < 0, in (17) we obtain

t
o~ n _3 —T n—1)-~
it &) > 1 /0 e UTE F2 (1)(y — np) 221G ()7

At this point, we should recall that hypothesis (8) we have (y; — 72) > C127!, thus, given a
parameter 3 > 0 (which we will be precise later) we write

(71 —y2) > €127 > ¢ 27 to~(n+1)8,

Considering this in the last inequality, we get
¢
at,€) =n”" / e 2T ()2 2 2 g, () dr
0

t
— 2" Oy 2 g (B2 / T2 2 ()G (©)dr.
0

Now, recall that by expression (12) for 0 < 7 < ¢ we have f,—1(7) > fn—1(t). Then, we write

n—

t
a(t, &)z Cy2- e DI g 1(t)/ 2T () dr
0

n n- n- 2 t
=" Oy 97l (IR (R0 s g3 /oe-iﬁ-ﬂf“@n(f)w

t
—?" 9—1g—(n+1)3+2(n—1) <e—32t(2(n*1>+4)2—10(2”*1—1)210(n—1)) / e_%(t_T)54§n(£)dT.
0



8 OSCAR JARRIN AND GASTON VERGARA-HERMOSILLA

We must estimate the last integral above. By Lemma 2.2 we have the bound [¢| < 27T for all
& € Supp(gy). This fact and the inequality ¢t > T, (with T, = 21nT(2)> yield

‘ t
| et ar > [ etenzong g

1

TN 7N 7N N

_ _3194(n+1) |
R R A (3

|
—

24+ (1 — 731G, ()

v

241 (1 — ¢=3T4)G,(¢)

v

N|IW NWw Nw N w
|
—_

N— N N
|
—

v

271271, (¢).

Thus, in the previous estimate we obtain

-1
at, €) 2n2nC’1 9—lg—(n+1)B+2(n—1) (ef%2t(2("_1)+4)2710(2”_171)210(1171)) <;’> 274(n+1)271/g\n(§)

—1
— " Cy @) 271 (D (21 =5 (37102 g1 ) 91000, (),

Before continue, it is convenient to remark that

9= (nFD)(B+)+2(n=1) _ 9=(n+1)(B+4)+2(n+1-2) _ 9(n+1)(2-—4)9—4

and
2—10(2"*1—1)2—1 _ 2—5(2><2”*1—2)2—1 — 952" =1-1)9=1 _ 9=5(2"~1)94_

Then, from the last inequality we can get

at,€) > 772"01 <;’) 2712(n+1)(27574)67%2t(2("_1)+4)275(2"71)210(1171)/55”(5)

n 371, _B_4_10 —394(o(n—1)+4y _5on_ _g_ ~
:772 o <2) 9—1+42 B—4 10, 22t(2n— D+ )2 5(2 1)2n(2 B 4+10)gn(§)

w3\ o . R
=n*"Cy <2> 9 13-F¢—32(20 VT 952" ~1)gn(8-H)5 (¢).

Here, we set 8 = 3 and we obtain

-1
w68 2001 @ 916,220V =5(2 - Dging. (¢)
w3\ 7! N }
-2 <2> 9—16,— 312" 4)g=5(2"~1)gbn5 (¢}

~1
—#'ai(3) TR0
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Finally, assuming that the constant C is large enough and it verifies C; (g) 1 2716 > 1, we obtain
the wished estimate

Ut &) > 0¥ fu(t)gn(€), forallt > T, and € € R,
and Proposition 2.1 is proven. [ |

The lower estimate (13) obtained in Proposition 2.1 is now our key-tool to find a lower bound
on the quantity |lu(T%,-)| 5., with s > —1.

Proposition 2.2. Let s > —1, and let 1,72 numerical constants verifying (7) and (8). Then,
there exists a generic constant C > 0 such that the following estimate hold:

+00 on
(T, )%, > CZQn@s—l) <n2e—%T*(25)2—10) '

n=0

Proof. We write

+o0
(Tl = [ PR oPe =Y [ e, op
n=1 )

+oo
>y g /C g [T P
n=1

2n72n+1)

and using the lower estimate (13) we obtain
+o00

3 gz /

n—1 C(Qn 72n+1

+o0o
AT ©)Rde > Y 220 (1) / 32(6)de.
) n—1 C(

Qn’2n+1)
At this point, we shall need the following estimate:

Lemma 2.3. Let (gn)nen be the family of functions defined in (11). Then, there exists a constant
C > 0 such that for alln € N,

/ G2(e)de > c2 .
C(2n72n+l)

With this estimate, and the definition of functions f,(7%) (given in (12)), we get back to the
previous inequality to get

+00 +oo
n=1

2n72n+1) n=1

+
—C XO:O 2(23—1)nn2"+1 (6—%2T*(2”+4) 2—10(2”—1)210n)

n=1

+oo
=C Z 2(25—1)71,72"+1 (e—%T*(2”+5) 2—10><2"210210n>
n=1

+o0o gn
>C Z o(2s—1)n (n2e—%T*(25) 2_10) :
n=1
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from where we obtain the desired inequality. Thus, Proposition 2.2 is proven. |

Now, we are able to finish the proof of Theorem 1.1. For doing it, we need to consider the
following cases of the parameter s > —1:

e Case —1<s < 1. In this case we have 2271 < 1 and then (22~1)" > (225=1)2". Thus, by
Proposition 2.2 We get

+oo 3 s on
(T, )2, > CZ (223 L2372 )2—10)
n=1
Then, setting n* > 2'72Cy, with
~1
(18) Co = (73T 9710)

and T, = %(2), this series diverges and we conclude the blow-up of the norm |[u(T%,-)|| 4.

e Case % < s. Remark that here we have 225~ > 1. Considering again Proposition 2.2,
the constant Cj defined above, and setting n? > Cj we obtain

+oo , . -
HU(T*7 )HHS Z C Z (772€_§T*(2 )2—10) ’
n=0

where the last series is also divergent.
With this we conclude the proof of Theorem 1.1. |

3. APPENDIX: PROOF OF TECHNICAL LEMMAS

Proof of Lemma 2.1. With a little abuse of notation we write ug = K (¢, ) % ug, hence, we recall
that by considering n € N and

Uny1(t,+) = K(t,-) * up(x / K(t—, < (( 82)% n>2 + 'yzunaiuTL) (1,-)dr,

the Picard iteration scheme provides an unique solution u to the problem (9), where

u= lim wu, € X;
n——+oo " To-

By taking the Fourier transform in the space variable of each iteration u,, we obtain

Unia(t,€) = K(t,€)to(¢ / K(t = 7,€) (M€l * |€]Tn) — Y2ln * (€%00n)) (7,€) dT
where
Rt ¢) = e t(-€ralel )

By hypothesis we have ug(£) > 0, then the positivity of the right-hand side above carries on in the
Picard iteration as long as (7) holds. Thus, u satisfies u(¢,£) > 0, for all ¢ > 0 and € € R. [ |
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Proof of Lemma 2.2. The proof follows from an induction process.

e Step n = 0. This case follows easily from the fact that, the support of gy is given by
3 1
R:|£—=| <=7 =]1,2[
{eerite-Ji<;} -

e Step n > 1. Let us start by assuming Supp(g,_1) C C(2"~1,2"). Now, considering this
fact and

G = Got # Gut = / Gnrt (01 (€ — p)dp,

we conclude Supp(gn—1(€ — p)) € {2771 < € — p < 2"}. On the other hand, from the
induction hypothesis we also know that Supp(g,_1(p)) € {2"~! < p < 2"}. Thus, gathering
together these facts yield,

Supp(Gn—1(p)gn—1(€ — p)) C ]2, 2"},
and then we conclude Supp(g,) C C(27,2"1).
With this we conclude the proof. |

Proof of Lemma 2.3. This fact can be deduced by induction. In fact, for k = 0 we directly
obtain ||gol|;» = 1. Now, let us suppose that for & > 1 we have [|gy—1||1 = 1. Considering the
definition of functions g and the fact the they are positive, we obtain

Gkl = /R (Gt * o1 (E)de

= /R /R Gk—1(p)Gu—1(& — p)dpdE
= [ G ( [ e~ p)d£> dp

By noticing that //g\k_l(é — p)d€ = ||gk—1]| ;1 = 1, we deduce ||gg||;1 = 1. [ |
R

Acknowledgements. The authors warmly thanks Diego Chamorro for his helpful comments and
advises. The second author is supported by the ANID postdoctoral program BCH 2022 grant No.
74220003.

Statements and Declaration. Data sharing does not apply to this article as no datasets were
generated or analyzed during the current study. In addition, the authors declare that they have no
conflicts of interest, and all of them have equally contributed to this paper.

REFERENCES

[1] L. Brandolese and M.F. Cortez. Blow-up for the nonlinear heat equation with small initial data in scale-invariant
Besov norms. Journal of Functional Analysis, Volume 276, Issue 8: 2589-2604 (2019).

[2] D. Chamorro and E. Issoglio. Blow-up regions for a class of fractional evolution equations with smoothed quadratic
nonlinearities. Mathematische Nachrichten Volume 295, Issue 8 (2022).

[3] G. M. Coclite and L. Di Rubio . H' Solutions for a Kuramoto-Velarde Type Equation. Mediterranean Journal
of Mathematics, Volume 20, Issue 3: p 110 (2023).



12

OSCAR JARRIN AND GASTON VERGARA-HERMOSILLA

[4] I. Gallagher and M. Paicu. Remarks on the blow-up of solutions to a toy model for the Navier-Stokes equations.

Proceedings of the American Mathematical Society, 16: 971-992 (1976). Volume 137, Issue 6: 2075-2083 (2009).

[5] B.I. Cohen, J. A. Krommes, W. M. Tang and M. N. Rosenbluth. Nonlinear saturation of the dissipative trapped-

ion mode by mode coupling. Nuclear Fusion, 16: 971-992 (1976).

[6] P.L. Garcia-Ybarra, J.L. Castillo & M.G. Velarde. Benard—-Marangoni convection with a deformable interface

and poorly conducting boundaries. Phys. Fluids, 30: 2655-2661 (1987).

[7] P.L. Garcia-Ybarra, J.L. Castillo & M.G. Velarde. A nonlinear evolution equation for Benard—Marangoni con-

vection with deformable boundary. Phys. Lett. A, 122: 107-110 (1987).

[8] J.M. Hyman & B. Nicolaenko. Coherence and chaos in Kuramoto—Velarde equation. In: Grandall, M.G., Rabi-

novitz, P.H., Turner, R.E.L. (eds.) Directions in Partial Differential Equations, pp. 89-111 (1987).

[9] S. Montgomery-Smith. Finite time blow up for a Navier-Stokes like equation. Proc. Amer. Math. Soc.,

129:30173023, (2001).

[10] H.Oertel. Jr & Zierep. Convective Transport and Instability Phenomena. Braun, Karlsruhe (1982).
[11] D. Pilod. Sharp well-posedness results for the Kuramoto-Velarde equation. Communications on Pure and Applied

Analysis, 7(4): 867-881 (2008).

[12] J. Topper and T. Kawahara. Approzimate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc.

Japan 44: 663-666 (1978).

ESCUELA DE CIENCIAS FiSICAS Y MATEMATICAS, UNIVERSIDAD DE LAS AMERICAS Via A NaYoN, C.P.170124,

QuiTo, ECUADOR

Email address: oscar.jarrin@udla.edu.ec

LABORATOIRE DE MATHEMATIQUES ET MODELISATION D’EVRY, CNRS UMR 8071, UNIVERSITE PARIS-SACLAY,

91025, EVRY, FRANCE

Email address: (corresponding author) gaston.vergarahermosilla@univ-evry.fr



	1. Introduction and main result
	2. Proof of Theorem 1.1
	3. Appendix: Proof of technical lemmas
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3

	References

